
CS 4814: Homework 2

due 09/09, 11:59pm

Each problem is worth 20 points, except the warm-up problem (see below).

Warm Up
You do not have to turn anything in for this problem. However, if you are struggling with the problems below, we
recommend solving this one. It is a bit easier, but the proof has a similar �avor to the ones below and will help you grow
your diagonalization muscles.

In class, we proved the existence of undecidable languages using the following fact:

The set of binary strings {0, 1}∗ has strictly smaller cardinality than the set of all languages 2{0,1}∗ �
{S | S ⊆ {0, 1}∗}, that is, for every function f : {0, 1}∗ → 2{0,1}∗ there exists some language
S0 ⊆ {0, 1}∗ not in the image of f .

Prove this fact using diagonalization.

Question 1
Show that the following language B is undecidable:

B � {〈M〉 : M is a machine which runs in n3 + 100 time}.

Question 2
In this problem, you will complete the proof of the time hierarchy theorem from lecture. Recall that our goal
is to show that TIME(n2) is strictly contained in TIME(n4). We gave a language L and proved the following
statements:

• No n3-time TM decides L.

• L ∈ TIME(n4).
To complete the proof, we need to show something a bit di�erent than (1)—that L < TIME(n2). (Here,
TIME(nk) contains all problems solved by O(nk)-time Turing machines.)

Recall that
L � {〈M〉 : M(〈M〉) outputs 0 in at most n3 steps}.

(a) Adapt the proof that no n3-time TM decides L to show that every n3-time TM fails to solve L on in�nitely
many inputs.

(b) Show that for every language A ∈ TIME(n2), there exists an n3-time Turing machine that solves A on all
but a �nite number of inputs.

(c) Use part (a) and (b) to conclude that L < TIME(n2).

1



Question 3

In class, we sketched a proof of Gödel’s incompleteness theorem, saying that any proof system for �rst order
logic over the natural numbers is either unsound or incomplete. This does not, however, yield an explicit
formula in �rst order logic which is true but unprovable in a given proof system. In this problem you will
�nd such a formula.

We will work, as before, in �rst-order logic over the natural numbers. This is �rst-order logic (so it has
boolean operations and existential and universal quanti�cation) augmented with multiplication, addition,
and equality. Recall that a proof system for this theory is a TM V (also called a veri�er) which always halts.
The machine V interprets its input as 〈φ, π〉, where φ is a formula in the logic (and φ has no free variables)
and π is a (candidate) proof for φ. The proof system V is sound if for every false φ there is no π so that
V(〈φ, π〉) � 1, and it is complete if for every true φ there exists π so that V(〈φ, π〉) � 1.

For the rest of the problem, �x a sound veri�er V . Consider a �xed enumeration φ1 , φ2 , . . . of formulas
with one free variable, and a �xed enumeration π1 , π2 , . . . of (potential) proofs π. You may assume that our
logic contains a formula ψ with one free variable x such that ψ(x) is true if and only if there is y so that
V(¬φx(x), πy) � 1. (In words, ψ(x) is true if and only if the formula ¬φx(x) is provable within the proof
system given by V .) Using ψ, �nd an explicit sentence of the logic which is true but not provable by V .

2


	Warm Up
	Question 1
	Question 2
	Question 3

